Multi-Graph Learning with Positive and Unlabeled Bags
نویسندگان
چکیده
In this paper, we formulate a new multi-graph learning task with only positive and unlabeled bags, where labels are only available for bags but not for individual graphs inside the bag. This problem setting raises significant challenges because bag-of-graph setting does not have features to directly represent graph data, and no negative bags exits for deriving discriminative classification models. To solve the challenge, we propose a puMGL learning framework which relies on two iteratively combined processes for multigraph learning: (1) deriving features to represent graphs for learning; and (2) deriving discriminative models with only positive and unlabeled graph bags. For the former, we derive a subgraph scoring criterion to select a set of informative subgraphs to convert each graph into a feature space. To handle unlabeled bags, we assign a weight value to each bag and use the adjusted weight values to select most promising unlabeled bags as negative bags. A margin graph pool (MGP), which contains some representative graphs from positive bags and identified negative bags, is used for selecting subgraphs and training graph classifiers. The iterative subgraph scoring, bag weight updating, and MGP based graph classification forms a closed loop to find optimal subgraphs and most suitable unlabeled bags for multi-graph learning. Experiments and comparisons on real-world multigraph data demonstrate the algorithm performance.
منابع مشابه
Convex Formulation of Multiple Instance Learning from Positive and Unlabeled Bags
Multiple instance learning (MIL) is a variation of traditional supervised learning problems where data (referred to as bags) are composed of sub-elements (referred to as instances) and only bag labels are available. MIL has a variety of applications such as content-based image retrieval, text categorization, and medical diagnosis. Most of the previous work for MIL assume that training bags are ...
متن کاملMulti-Instance Learning: A Survey
In multi-instance learning, the training set comprises labeled bags that are composed of unlabeled instances, and the task is to predict the labels of unseen bags. This paper provides a survey on this topic. At first, it introduces the origin of multi-instance learning. Then, developments on the study of learnability, learning algorithms, applications and extensions of multi-instance learning a...
متن کاملEnsembles of Multi-instance Learners
In multi-instance learning, the training set comprises labeled bags that are composed of unlabeled instances, and the task is to predict the labels of unseen bags. Through analyzing two famous multi-instance learning algorithms, this paper shows that many supervised learning algorithms can be adapted to multi-instance learning, as long as their focuses are shifted from the discrimination on the...
متن کاملPIGMIL: Positive Instance Detection via Graph Updating for Multiple Instance Learning
Positive instance detection, especially for these in positive bags (true positive instances, TPIs), plays a key role for multiple instance learning (MIL) arising from a specific classification problem only provided with bag (a set of instances) label information. However, most previous MIL methods on this issue ignore the global similarity among positive instances and that negative instances ar...
متن کاملConfidence Estimation for Graph-based Semi-supervised Learning
To select unlabeled example effectively and reduce classification error, confidence estimation for graphbased semi-supervised learning (CEGSL) is proposed. This algorithm combines graph-based semi-supervised learning with collaboration-training. It makes use of structure information of sample to calculate the classification probability of unlabeled example explicitly. With multi-classifiers, th...
متن کامل